Product data sheet

Specifications

variable speed drive ATV212-11kW
 - 15hp - 240V - 3ph -wo EMC - IP21

ATV212HD11M3X

Electrical connection	VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES: terminal $2.5 \mathrm{~mm}^{2} /$ AWG 14 L1/R, L2/S, L3/T: terminal $25 \mathrm{~mm}^{2}$ / AWG 3
Tightening torque	0.6 N.m (VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES) 4.5 N.m, $40 \mathrm{lb} . i n(\mathrm{~L} 1 / \mathrm{R}, \mathrm{L} 2 / \mathrm{S}, \mathrm{L} 3 / \mathrm{T}$)
Supply	Internal supply for reference potentiometer (1 to 10 kOhm): $10.5 \mathrm{~V} \mathrm{DC}+/-5 \%,<10 \mathrm{~A}$, protection type: overload and short-circuit protection Internal supply: 24 V DC $(21 \ldots 27 \mathrm{~V}),<200 \mathrm{~A}$, protection type: overload and short-circuit protection
Sampling duration	$2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ F discrete $2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ R discrete $2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ RES discrete $3.5 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ VIA analog $22 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ VIB analog
Response time	FM 2 ms , tolerance $+/-0.5 \mathrm{~ms}$ for analog output(s) FLA, FLC 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s) FLB, FLC 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s) RY, RC 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s)
Accuracy	$\begin{aligned} & +/-0.6 \%\left(\text { VIA) for a temperature variation } 60^{\circ} \mathrm{C}\right. \\ & +/-0.6 \% \text { (VIB) for a temperature variation } 60^{\circ} \mathrm{C} \\ & +/-1 \% \text { (FM) for a temperature variation } 60^{\circ} \mathrm{C} \end{aligned}$
Linearity error	VIA: $+/-0.15 \%$ of maximum value for input VIB: $+/-0.15 \%$ of maximum value for input FM: +/- 0.2% for output
Analogue output type	FM switch-configurable voltage $0 . .10 \mathrm{~V}$ DC, impedance: 7620 Ohm, resolution 10 bits FM switch-configurable current $0 \ldots 20 \mathrm{~mA}$, impedance: 970 Ohm, resolution 10 bits
Discrete output type	Configurable relay logic: (FLA, FLC) NO - 100000 cycles Configurable relay logic: (FLB, FLC) NC - 100000 cycles Configurable relay logic: (RY, RC) NO - 100000 cycles
Minimum switching current	3 mA at 24 V DC for configurable relay logic
Maximum switching current	$\begin{aligned} & 5 \mathrm{~A} \text { at } 250 \mathrm{VAC} \text { on resistive load }-\cos \text { phi }=1-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}(\mathrm{FL}, \mathrm{R}) \\ & 5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \text { on resistive load }-\cos \text { phi }=1-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}(\mathrm{FL}, \mathrm{R}) \\ & 2 \mathrm{~A} \text { at } 250 \mathrm{VAC} \text { on inductive load }-\cos \mathrm{phi}=0.4-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}(\mathrm{FL}, \mathrm{R}) \\ & 2 \mathrm{~A} \text { at } 30 \mathrm{VDC} \text { on inductive load }-\cos \mathrm{phi}=0.4-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}(\mathrm{FL}, \mathrm{R}) \end{aligned}$
Discrete input type	F programmable 24 V DC, with level 1 PLC, impedance: 4700 Ohm R programmable 24 V DC, with level 1 PLC, impedance: 4700 Ohm RES programmable 24 V DC, with level 1 PLC, impedance: 4700 Ohm
Discrete input logic	Positive logic (source) (F, R, RES), <=5 V (state 0), >= 11 V (state 1) Negative logic (sink) (F, R, RES), >= 16 V (state 0), <= 10 V (state 1)
Dielectric strength	2830 V DC between earth and power terminals 4230 V DC between control and power terminals
Insulation resistance	>= 1 mOhm 500 V DC for 1 minute
Frequency resolution	Display unit: 0.1 Hz Analog input: $0.024 / 50 \mathrm{~Hz}$
Communication service	Read device identification (43) Monitoring inhibitable Read holding registers (03) 2 words maximum Write multiple registers (16) 2 words maximum Write single register (06) Time out setting from 0.1 to 100 s
Option card	Communication card for LonWorks
Power dissipation in W	459 W
Air flow	$157 \mathrm{~m} 3 / \mathrm{h}$
Specific application	HVAC
Variable speed drive application selection	Compressor for scroll Building - HVAC Fan Building - HVAC Pump Building - HVAC
Motor power range AC-3	$7 . . .11 \mathrm{~kW}$ at 200... 240 V 3 phases
Motor starter type	Variable speed drive
Discrete output number	2
Analogue input number	2
Analogue input type	VIA switch-configurable voltage: 0... 10 V DC 24 V max, impedance: 30000 Ohm, resolution 10 bits VIB configurable voltage: $0 . . .10 \mathrm{~V}$ DC 24 V max, impedance: 30000 Ohm, resolution 10 bits VIB configurable PTC probe: 0 ... 6 probes, impedance: 1500 Ohm

Analogue output number	1
Physical interface	2-wire RS 485
Connector type	1 open style 1 RJ45
Transmission rate	9600 bps or 19200 bps
Transmission frame	RTU
Number of addresses	1... 247
Data format	8 bits, 1 stop, odd even or no configurable parity
Type of polarization	No impedance
Asynchronous motor control profile	Flux vector control without sensor, standard Voltage/frequency ratio, 2 points Voltage/frequency ratio, 5 points Voltage/frequency ratio, automatic IR compensation (U/f + automatic Uo) Voltage/frequency ratio - Energy Saving, quadratic U/f
Torque accuracy	+/-15 \%
Transient overtorque	120 \% of nominal motor torque +/-10\% for 60 s
Acceleration and deceleration ramps	Automatic based on the load Linear adjustable separately from 0.01 to 3200 s
Motor slip compensation	Automatic whatever the load Adjustable Not available in voltage/frequency ratio motor control
Switching frequency	$6 . .16 \mathrm{kHz}$ adjustable $12 . . .16 \mathrm{kHz}$ with derating factor
Nominal switching frequency	12 kHz
Braking to standstill	By DC injection
Network frequency	47.5... 63 Hz
Prospective line Isc	22 kA
Protection type	Overheating protection: drive Thermal power stage: drive Short-circuit between motor phases: drive Input phase breaks: drive Overcurrent between output phases and earth: drive Overvoltages on the DC bus: drive Break on the control circuit: drive Against exceeding limit speed: drive Line supply overvoltage and undervoltage: drive Line supply undervoltage: drive Against input phase loss: drive Thermal protection: motor Motor phase break: motor With PTC probes: motor
Width	245 mm
Height	330 mm
Depth	190 mm
Net weight	11.55 kg

Environment

Pollution degree	2 conforming to IEC 61800-5-1
IP degree of protection	IP20 on upper part without blanking plate on cover conforming to EN/IEC 61800-5-1
	IP2 on upper part without blanking plate on cover conforming to EN/IEC 60529
	IP21 conforming to EN/EC 61800-5-1
	IP21 conforming to EN/EC 60529
	IP41 on upper part conforming to EN/IEC 61800-5-1
	IP41 on upper part conforming to EN/IEC 60529

Classes 3S2 conforming to IEC 60721-3-3

Noise level	54 dB conforming to 86/188/EEC
Operating altitude	$1000 . . .3000 \mathrm{~m}$ limited to 2000 m for the Corner Grounded distribution network with current derating 1% per 100 m <= 1000 m without derating
Relative humidity	$5 . .95 \%$ without condensation conforming to IEC 60068-2-3 $5 . . .95 \%$ without dripping water conforming to IEC 60068-2-3
Ambient air temperature for operation	$-10 \ldots 40^{\circ} \mathrm{C}$ (without derating) $40 . .50^{\circ} \mathrm{C}$ (with derating factor)
Operating position	Vertical +/- 10 degree
Product certifications	C-Tick NOM 117 UL CSA
Marking	CE
Standards	EN 61800-3 environments 2 category C1 EN 61800-3 environments 1 category C2 EN 61800-3 IEC 61800-3 environments 2 category C3 EN 61800-5-1 EN 61800-3 environments 1 category C3 IEC 61800-3 IEC 61800-3 environments 1 category C2 EN 61800-3 environments 2 category C2 IEC 61800-5-1 IEC 61800-3 environments 1 category C1 IEC 61800-3 environments 1 category C3 UL Type 1 EN 61800-3 environments 2 category C3 EN 61800-3 environments 1 category C1 IEC 61800-3 environments 2 category C2 IEC 61800-3 environments 2 category C1
Assembly style	With heat sink
Electromagnetic compatibility	Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Voltage dips and interruptions immunity test conforming to IEC 61000-4-11
Regulation loop	Adjustable PI regulator
Ambient air temperature for storage	$-25 . .70^{\circ} \mathrm{C}$

Packing Units

Unit Type of Package 1	PCE
Number of Units in Package 1	1
Package 1 Weight	11.07 kg
Package 1 Height	28.0 cm
Package 1 width	29.0 cm
Package 1 Length	39.0 cm
Unit Type of Package 2	P06
Number of Units in Package 2	4
Package 2 Weight	57.28 kg
Package 2 Height	73.5 cm
Package 2 width	60.0 cm
Package 2 Length	80.0 cm

Offer Sustainability
Sustainable offer status
Green Premium product

REACh Regulation	REACh Declaration
EU RoHS Directive	Pro-active compliance (Product out of EU RoHS legal scope) EU RoHS Declaration
Mercury free	Yes
RoHS exemption information	Yes
China RoHS Regulation	China RoHS declaration
Environmental Disclosure	Product Environmental Profile
Circularity Profile	End of Life Information
WEEE	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins
California proposition $\mathbf{6 5}$	WARNING: This product can expose you to chemicals including: Lead and lead compounds, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www. P65Warnings.ca.gov

Contractual warranty

Warranty
18 months

Dimensions Drawings

Dimensions

Plate for EMC mounting (supplied with the drive)
$\frac{\mathrm{mm}}{\mathrm{in}}$.

Mounting and Clearance

Mounting Recommendations

Clearance

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.
Install the unit vertically:

- Do not place it close to heating elements.
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from bottom to the top of the unit.

Mounting Types

Type A mounting
$\frac{\mathrm{mm}}{\mathrm{m} .}$

Type B mounting

Type C mounting
$\frac{\mathrm{mm}}{\mathrm{in} \text {. }}$

By removing the protective blanking cover from the top of the drive, the degree of protection for the drive becomes IP21. The protective blanking cover may vary according to the drive model, see opposite.

Mounting and Clearance

Specific Recommendations for Mounting in an Enclosure

To help ensure proper air circulation in the drive:

- Fit ventilation grilles.
- Check that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate
- Use special filters with UL Type 12/IP54 protection.
- Remove the blanking cover from the top of the drive.

Sealed Metal Enclosure (IP54 Degree of Protection)

The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions, such as dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc. This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

Connections and Schema

Recommended Wiring Diagram
3-Phase Power Supply

A1: ATV 212 drive
KM1: Contactor
Q1: Circuit breaker
Q2: \quad GV2 L rated at twice the nominal primary current of T1
Q3: GB2CB05
S1, S2: XB4 B or XB5 A pushbuttons
T1: $\quad 100$ VA transformer 220 V secondary
(1) Fault relay contacts for remote signalling of the drive status
(2) Connection of the common for the logic inputs depends on the positioning of the switch (Source, PLC, Sink)
(3) Reference potentiometer SZ1RV1202

NOTE: All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Switches (Factory Settings)

Voltage/current selection for analog I/O (VIA and VIB)
VIA U
VIB U \square PTC

Voltage/current selection for analog I/O (FM)

Selection of logic type

Connections and Schema

Other Possible Wiring Diagrams
Logic Inputs According to the Position of the Logic Type Switch
"Source" position

"Sink" position

"PLC" position with PLC transistor outputs	
(1) PLC	(1) PLC

2-wire control

F: Forward
R: Preset speed
(2) ATV 212 control terminals

3 -wire control

F: Forward
R: Stop
RES: Reverse
(2) ATV 212 control terminals

PTC probe

(2) ATV 212 control terminals
(3) Motor

Analog Inputs
Voltage analog inputs

| External +10 V | |
| :--- | :--- | :--- | :--- |
| AT | |

Analog input configured for current: 0-20 mA, 4-20 mA, X-Y mA

(2) ATV 212 control terminals
(5) Source 0-20 mA, 4-20 mA, X-Y mA

Analog input VIA configured as positive logic input ("Source" position)

(2)

ATV 212 control terminals
Analog input VIA configured as negative logic input ("Sink" position)

(2) ATV 212 control terminals

Performance Curves

Derating Curves

The derating curves for the drive nominal current (In) depend on the temperature, the switching frequency and the mounting type (A, B or C). For intermediate temperatures ($45^{\circ} \mathrm{C}$ for example), interpolate between 2 curves.

